Login / Signup

Stretching Wormlike Chains in Narrow Tubes of Arbitrary Cross-Sections.

Ming LiJizeng Wang
Published in: Polymers (2019)
We considered the stretching of semiflexible polymer chains confined in narrow tubes with arbitrary cross-sections. Based on the wormlike chain model and technique of normal mode decomposition in statistical physics, we derived a compact analytical expression on the force-confinement-extension relation of the chains. This single formula was generalized to be valid for tube confinements with arbitrary cross-sections. In addition, we extended the generalized bead-rod model for Brownian dynamics simulations of confined polymer chains subjected to force stretching, so that the confinement effects to the chains applied by the tubes with arbitrary cross-sections can be quantitatively taken into account through numerical simulations. Extensive simulation examples on the wormlike chains confined in tubes of various shapes quantitatively justified the theoretically derived generalized formula on the force-confinement-extension relation of the chains.
Keyphrases
  • single molecule
  • molecular dynamics
  • human milk
  • preterm infants