Login / Signup

Structural Screening and Design of Dendritic Micro-Mesoporous Composites for Efficient Hydrodesulfurization of Dibenzothiophene and 4,6-Dimethyldibenzothiophene.

Xilong WangChengkun XiaoJinlin MeiMohnnad H AlabsiYu ShiZhen ZhaoAijun DuanKuo-Wei HuangChunming Xu
Published in: ACS applied materials & interfaces (2020)
Novel dendritic micro-mesoporous TS-1/dendritic mesoporous silica nanoparticle (DMSN) composites (TD) were assembled by TS-1 nanocrystals with ultrasmall particle size and strong acidity. TS-1 seeds and DMSNs were composited via the Ti-O-Si chemical bond, which stimulate the generation of Brønsted (B) and Lewis (L) acids. The spillover d-electrons produced by the Ti element of TS-1 seeds produced a spillover of d-electrons, which could interact with the surface of MoS2 phases, thereby reducing Mo-S interactions and create sulfur vacancies that are favorable for dibenzothiophene (DBT) and 4,6-dimethyldibenzothiophene (4,6-DMDBT) hydrodesulfurization (HDS) reactions. The increased amount of B&L acid of NiMo/TD-2.0 with cetyltrimethylammonium bromide/sodium salicylate molar ratio of 2.0 played an important role in facilitating the hydrogenation (HYD) route of DBT HDS and the isomerization (ISO) route of 4,6-DMDBT HDS, which is more favorable for the reduction of steric hindrance of DBT and 4,6-DMDBT reactants in the HDS reaction process. The NiMo/TD-2.0 catalyst exhibited the highest turnover frequency (TOF) value and HDS reaction rate constant (kHDS) of DBT and 4,6-DMDBT due to its ultrasmall particle size, uniform spherical dendritic morphology, strong B&L acidity, and good stacking degree.
Keyphrases
  • room temperature
  • reduced graphene oxide
  • highly efficient
  • iron oxide
  • visible light
  • mass spectrometry
  • metal organic framework
  • ms ms
  • gold nanoparticles
  • quantum dots
  • bone mineral density