Self-Regulatory Micro- and Macroscale Patterning of ATP-Mediated Nanobioconjugate.
Ekta ShandilyaSubhabrata MaitiPublished in: ACS nano (2023)
Directional interactions and the assembly of a nanobioconjugate in clusters at a specific location are important for patterning and microarrays in biomedical research. Herein, we report that self-assembly and spatial control in surface patterning of the surfactant-functionalized nanoparticles can be governed in micro- and macroscale environments by two factors, synergistic enzyme-substrate-nanoparticle affinity and the phoretic effect. First, we show that aggregation of cationic gold nanoparticles (GNP) can be modulated by multivalent anionic nanoparticle binding of an adenosine-based nucleotide and enzyme, alkaline phosphatase. We further demonstrate two different types of their autonomous aggregation pattern: (i) by introducing an enzyme gradient that modulates the synergistic nonequilibrium interactivity of the nanoparticle, nucleotide, and enzyme both in microfluidic conditions and at the macroscale; and (ii) the surface deposition pattern from evaporating droplets via the coffee ring effect. Here, temporal control over the width and site of the patterning area inside the microfluidic channel under catalytic and noncatalytic conditions has also been demonstrated. Finally, we show a change in capillary phoresis parameters responsible for the coffee ring due to introduction of ATP-loaded GNP in the blood serum, showing applicability in low-cost disease diagnostics. Overall, an enzyme-actuated surface nanobiopatterning method has been demonstrated that has potential application in controlled micro- and macroscale area patterning with a diverse cascade catalytic surface and spatiotemporal multisensory-based application.