Embedded Direct Ink Writing 3D Printing of UV Curable Resin/Sepiolite Composites with Nano Orientation.
Hyun-Joong KimJaehwan KimKwang-Hyun RyuJiho LeeHyun-Joong KimJinho HyunJaseung KooPublished in: ACS omega (2023)
Among the various 3D printing methods, direct ink writing (DIW) through extrusion directly affects the microstructure and properties of materials. However, use of nanoparticles at high concentrations is restricted due to difficulties in sufficient dispersion and the deteriorated physical properties of nanocomposites. Thus, although there are many studies on filler alignment with high-viscosity materials with a weight fraction higher than 20 wt %, not much research has been done with low-viscosity nanocomposites with less than 5 phr. Interestingly, the alignment of anisotropic particles improves the physical properties of the nanocomposite at a low concentration of nanoparticles with DIW. The rheological behavior of ink is affected by the alignment of anisotropic sepiolite (SEP) at a low concentration using the embedded 3D printing method, and silicone oil complexed with fumed silica is used as a printing matrix. A significant increase in mechanical properties is expected compared to conventional digital light processing. We clarify the synergistic effect of the SEP alignment in a photocurable nanocomposite material through physical property investigations.