Guiding Transient Peptide Assemblies with Structural Elements Embedded in Abiotic Phosphate Fuels.
Mahesh D PolKun DaiRalf ThomannSandra MoserSubhra Kanti RoyCharalampos G PappasPublished in: Angewandte Chemie (International ed. in English) (2024)
Despite great progress in the construction of non-equilibrium systems, most approaches do not consider the structure of the fuel as a critical element to control the processes. Herein, we show that the amino acid side chains (A, F, Nal) in the structure of abiotic phosphates can direct assembly and reactivity during transient structure formation. The fuels bind covalently to substrates and subsequently influence the structures in the assembly process. We focus on the ways in which the phosphate esters guide structure formation and how structures and reactivity cross regulate when constructing assemblies. Through the chemical functionalization of energy-rich aminoacyl phosphate esters, we are able to control the yield of esters and thioesters upon adding dipeptides containing tyrosine or cysteine residues. The structural elements around the phosphate esters guide the lifetime of the structures formed and their supramolecular assemblies. These properties can be further influenced by the peptide sequence of substrates, incorporating anionic, aliphatic and aromatic residues. Furthermore, we illustrate that oligomerization of esters can be initiated from a single aminoacyl phosphate ester incorporating a tyrosine residue (Y). These findings suggest that activated amino acids with varying reactivity and energy contents can pave the way for designing and fabricating structured fuels.