Login / Signup

A Refined Method for Studying Foraging Behaviour and Body Mass in Group-Housed European Starlings.

Melissa BatesonRyan Nolan
Published in: Animals : an open access journal from MDPI (2022)
Laboratory experiments on passerine birds have been important for testing hypotheses regarding the effects of environmental variables on the adaptive regulation of body mass. However, previous work in this area has suffered from poor ecological validity and animal welfare due to the requirement to house birds individually in small cages to facilitate behavioural measurement and frequent catching for weighing. Here, we describe the social foraging system, a novel technology that permits continuous collection of individual-level data on operant foraging behaviour and body mass from group-housed European starlings ( Sturnus vulgaris ). We report on the rapid acquisition of operant key pecking, followed by foraging and body mass data from two groups of six birds maintained on a fixed-ratio operant schedule under closed economy for 11 consecutive days. Birds gained 6.0 ± 1.2 g (mean ± sd) between dawn and dusk each day and lost an equal amount overnight. Individual daily mass gain trajectories were non-linear, with the rate of gain decelerating between dawn and dusk. Within-bird variation in daily foraging effort (key pecks) positively predicted within-bird variation in dusk mass. However, between-bird variation in mean foraging effort was uncorrelated with between-bird variation in mean mass, potentially indicative of individual differences in daily energy requirements. We conclude that the social foraging system delivers refined data collection and offers potential for improving our understanding of mass regulation in starlings and other species.
Keyphrases
  • physical activity
  • electronic health record
  • risk assessment
  • human health
  • data analysis
  • neural network