Login / Signup

Fragment-based investigation of thiourea derivatives as VEGFR-2 inhibitors: a cross-validated approach of ligand-based and structure-based molecular modeling studies.

Suvankar BanerjeeShristi KejriwalBalaram GhoshGoverdhan LankaTarun JhaNilanjan Adhikari
Published in: Journal of biomolecular structure & dynamics (2023)
Angiogenesis is mediated by the vascular endothelial growth factor (VEGF) that plays a key role in the modulation of progression, invasion and metastasis, related to solid tumors and hematological malignancies. Several small-molecule VEGFR-2 inhibitors are marketed, but their usage is restricted to specific cancers due to severe toxicities. Therefore, cost-effective novel small molecule VEGFR-2 inhibitors may be an alternative to overcome these adverse effects. Here, a set of thiourea-based VEGFR-2 inhibitors were considered for a combined fragment-based QSAR technique, structure-based molecular docking followed by molecular dynamics simulation studies to acquire insights into the key structural attributes and the binding pattern of enzyme-ligand interactions. Noticeably, amine-substituted quinazoline phenyl ring and a higher number of nitrogen atoms, and the hydrazide function in the molecular structure are crucial for VEGFR-2 inhibition whereas methoxy groups are detrimental to VEGFR-2 inhibition. The MD simulation study of sorafenib and thiourea derivatives explored the significance of urea and thiourea moiety binding at VEGFR-2 active site that can be utilized further in the future to design molecules for greater binding stability and better VEGFR-2 selectivity. Therefore, such findings can be beneficial for the development of newer VEGFR-2 inhibitors for further refinement to acquire better therapeutic efficacy.Communicated by Ramaswamy H. Sarma.
Keyphrases
  • vascular endothelial growth factor
  • molecular docking
  • small molecule
  • endothelial cells
  • molecular dynamics simulations
  • dna binding
  • protein protein