In vitroassessment of green polyhydroxybutyrate/chitosan blend loaded with kaempferol nanocrystals as a potential dressing for infected wounds.
Marian RofealFady Abd El-MalekXianghui QiPublished in: Nanotechnology (2021)
Despite the major medical advancements in recent decades, treating infected wounds successfully remains a challenge. In this research, a functional blend of Polyhydroxybutyrate (PHB) and Chitosan (Cs) was developed for wound infection mitigation with tailored biological and physicochemical properties. Water insoluble kaempferol (KPF) was pre-formulated to water soluble KPF nanocrystals (KPF-NCs) with fine particle size of 145 ± 11 nm, and high colloidal stability (-31 ± 0.4 mV) to improve its drug transdermal delivery. PHB-Cs-KPF-NCs (1:2 ratio) film owned the best physical properties in terms of high breathability, thermal stability and mechanical strength (33 ± 1 MPa). Besides, XRD and FTIR findings indicated the interaction between Cs, PHB and KPF, reducing the film crystallinity. The scanning electron microscopy of the film displayed a highly interconnected porous morphology. KPF-NCs were integrated in PHB-Cs matrix with a marked encapsulation efficiency of 96.6%. The enhanced drug-loading film showed a sustain release pattern of KPF-NCs over 48 h. Interestingly, the developed blend possessed an impressive blood clotting capacity within 20 min. Furthermore, we presented a new naturally-sourced mixture of Cs+KPF-NCs with powerful antibacterial effects against MDRStaphylococcus aureusandAcentibacter baumanniiat very low concentrations. The membrane evidenced a remarkable antibacterial naturein vitrowith almost 100% cell viability reduction against the study strains after 48 h. By virtue of these advantages, this green blend is highly proposed for optimal wound care.