Interrogation Techniques and Interface Circuits for Coil-Coupled Passive Sensors.
Marco DemoriMarco BaùMarco FerrariVittorio FerrariPublished in: Micromachines (2018)
Coil-coupled passive sensors can be interrogated without contact, exploiting the magnetic coupling between two coils forming a telemetric proximity link. A primary coil connected to the interface circuit forms the readout unit, while a passive sensor connected to a secondary coil forms the sensor unit. This work is focused on the interrogation of sensor units based on resonance, denoted as resonant sensor units, in which the readout signals are the resonant frequency and, possibly, the quality factor. Specifically, capacitive and electromechanical piezoelectric resonator sensor units are considered. Two interrogation techniques, namely a frequency-domain technique and a time-domain technique, have been analyzed, that are theoretically independent of the coupling between the coils which, in turn, ensure that the sensor readings are not affected by the interrogation distance. However, it is shown that the unavoidable parasitic capacitance in parallel to the readout coil introduces, for both techniques, an undesired dependence of the readings on the interrogation distance. This effect is especially marked for capacitance sensor units. A compensation circuit is innovatively proposed to counteract the effects of the parasitic input capacitance, and advantageously obtain distance-independent readings in real operating conditions. Experimental tests on a coil-coupled capacitance sensor with resonance at 5.45 MHz have shown a deviation within 1.5 kHz, i.e., 300 ppm, for interrogation distances of up to 18 mm. For the same distance range, with a coil-coupled quartz crystal resonator with a mechanical resonant frequency of 4.432 MHz, variations of less than 1.8 Hz, i.e., 0.5 ppm, have been obtained.