Login / Signup

Impact of polyethyleneglycol addition on diffusion coefficients in binary ionic liquid electrolytes composed of dicationic ionic liquid and polyethyleneglycol.

Tzi-Yi WuShyh-Gang SuChuen-Lin ChiuChung-Wen KuoYi-Hsuan Tung
Published in: Magnetic resonance in chemistry : MRC (2017)
We conduct a comparative study of conductivity and diffusion coefficient of two dicationic ionic liquids (3,3'-(octane-1,8-diyl)bis(1-ethyl-3-imidazolium) bis(trifluoromethylsulfonyl)amide ([IMCI][TFSI], S1) and 3,3'-(2,2'-(ethane-1,2-diylbis(oxy))bis(ethane-2,1-diyl))bis(1-ethyl-3-imidazolium) bis(trifluoromethylsulfonyl)amide ([IMOI][TFSI], S2)) at various temperatures. The diffusion coefficients of cation and anion in ionic liquids are determined by using pulse gradient spin-echo nuclear magnetic resonance method. S2 shows lower viscosity, higher conductivity, and higher diffusion coefficient than those of S1. Moreover, the influence of polyethyleneglycol (PEG200, Mw  = 200) addition in PEG200/IL binary solutions is investigated. PEG200/S1 binary solutions show lower viscosity, higher conductivity, and higher diffusion coefficient than those of neat S1. The experimental molar conductivity (Λ) of neat IL and PEG200/IL binary solutions is lower than that of the calculated molar conductivity (ΛNMR ) from pulse gradient spin-echo nuclear magnetic resonance method at various temperatures, indicating that not all the diffusion species belong to the ionic conduction. In other words, NMR diffusion measurements comprise charged and paired (without charge) ions. Copyright © 2017 John Wiley & Sons, Ltd.
Keyphrases
  • ionic liquid
  • magnetic resonance
  • room temperature
  • drug delivery
  • diffusion weighted imaging
  • high resolution
  • contrast enhanced
  • blood pressure
  • magnetic resonance imaging
  • molecular dynamics
  • high speed