The Remediation of Dysprosium-Containing Effluents Using Cyanobacteria Spirulina platensis and Yeast Saccharomyces cerevisiae .
Inga ZinicovscaiaNikita YushinDmitrii GrozdovAlexandra PeshkovaKonstantin VergelElena RodlovskayaPublished in: Microorganisms (2023)
Dysprosium is one of the most critical rare earth elements for industry and technology. A comparative study was carried out to assess the biosorption capacity of cyanobacteria Spirulina platensis and yeast Saccharomyces cerevisiae toward dysprosium ions. The effect of experimental parameters such as pH, dysprosium concentration, time of contact, and temperature on the biosorption capacity was evaluated. Biomass before and after dysprosium biosorption was analyzed using neutron activation analysis and Fourier-transform infrared spectroscopy. For both biosorbents, the process was quick and pH-dependent. The maximum removal of dysprosium using Spirulina platensis (50%) and Saccharomyces cerevisiae (68%) was attained at pH 3.0 during a one-hour experiment. The adsorption data for both biosorbents fitted well with the Langmuir isotherm model, whereas the kinetics of the process followed the pseudo-second-order and Elovich models. The maximum biosorption capacity of Spirulina platensis was 3.24 mg/g, and that of Saccharomyces cerevisiae was 5.84 mg/g. The thermodynamic parameters showed that dysprosium biosorption was a spontaneous process, exothermic for Saccharomyces cerevisiae and endothermic for Spirulina platensis. Biological sorbents can be considered an eco-friendly alternative to traditional technologies applied for dysprosium ion recovery from wastewater.