Login / Signup

Tuning the Bulk and Surface Properties of PDMS Networks through Cross-Linker and Surfactant Concentration.

Matthew LitwinowiczSarah RogersAndrew John CaruanaChristy John KinaneJames TellamRichard L Thompson
Published in: Macromolecules (2021)
The elastic modulus and hydrophilicity of cross-linked poly(dimethylsiloxane) (PDMS) are tunable via cross-linker concentration and the addition of a simple surfactant, C12E4, before curing. However, the surfactant concentration, [C12E4], reduces the elastic modulus (73% lower for 6.3% w/w) because it reduces the extent of curing. This is likely because the hygroscopic surfactant results in water poisoning of the catalyst. Three distinct time-dependent hydrophilicity profiles were identified using water contact angle analysis with [C12E4] determining which profile was observed. This indicates the concentration-dependent phase behavior of C12E4 within PDMS films. Changes in phase behavior were identified using small-angle neutron scattering (SANS) and a compatibility study. No surface excess or surface segregation of surfactant was observed at the PDMS-air interface. However, a surface excess revealed by neutron reflectivity against a D2O interface indicates that the increase in hydrophilicity results from the migration of C12E4 to the film interface when exposed to water.
Keyphrases
  • room temperature
  • high resolution
  • mass spectrometry