Login / Signup

Charge State of Au25(SG)18 Nanoclusters Induced by Interaction with a Metal Organic Framework Support and Its Effect on Catalytic Performance.

Kunlin ChuYucheng LuoDongjun WuZhifang SuJian-Ying ShiJin Zhong ZhangCheng-Yong Su
Published in: The journal of physical chemistry letters (2021)
We investigated the charge transfer between Au25(SG)18 nanoclusters and metal-organic framework (MOF) supports including Mil-101-Cr, Mil-125-Ti, and ZIF-8 by an X-ray photoemission technique and discussed the influence of resulted charge states of supported Au25(SG)18 nanoclusters on the 4-nitrophenol reduction reaction. Charge transfer from Au25(SG)18 to Mil-101-Cr induces positive charge Auδ+ (0 < δ < 1) while charge transfer from ZIF-8 to Au25(SG)18 generates negative charge Auδ- due to different metal-support interactions. Au25(SG)18 on Mil-125 shows metallic Au0, similar to unsupported Au25(SG)18, due to negligible charge transfer. The resulted charge state of Auδ- inhibits the formation of adsorbed hydride (H-) species because of electrostatic repulsion, while Auδ+ impairs the reductive ability of adsorbed hydride (H-) species due to strong affinity between them. In comparison, metallic Au0 in Au25(SG)18/Mil-125 and unsupported Au25(SG)18 presents the optimum catalytic activity. The current work provides guidelines to design effective metal nanoclusters in heterogeneous catalysis through metal-support interaction exerted by metal-oxo/nitric clusters within MOFs.
Keyphrases