Login / Signup

Contrasting sensitivity of soil bacterial and fungal community composition to one year of water limitation in Scots pine mesocosms.

Astrid C H JaegerMartin HartmannJohan SixEmily F Solly
Published in: FEMS microbiology ecology (2023)
The soil microbiome is crucial for regulating biogeochemical processes and can thus strongly influence tree health, especially under stress conditions. However, little is known about the effect of prolonged water deficit on soil microbial communities during the development of saplings. We assessed the response of prokaryotic and fungal communities to different levels of experimental water limitation in mesocosms with Scots pine saplings. We combined analyses of physicochemical soil properties and tree growth with DNA metabarcoding of soil microbial communities throughout four seasons. Seasonal changes in soil temperature and soil water content and a decreasing soil pH strongly influenced the composition of microbial communities but not their total abundance. Contrasting levels of soil water contents gradually altered the soil microbial community structure over the four seasons. Results indicated that prokaryotic communities were less resistant to water limitation than fungal communities. Water limitation promoted the proliferation of desiccation-tolerant, oligotrophic taxa. Moreover, water limitation and an associated increase in soil C/N ratio induced a shift in the potential lifestyle of taxa from symbiotic to saprotrophic. Overall, water limitation appeared to alter soil microbial communities involved in nutrient cycling, pointing to potential consequences for forest health affected by prolonged episodes of drought.
Keyphrases
  • plant growth
  • healthcare
  • public health
  • mental health
  • type diabetes
  • metabolic syndrome
  • climate change
  • endothelial cells
  • human health
  • health information
  • stress induced
  • high intensity
  • wastewater treatment
  • drug induced