Login / Signup

Manipulating Memory CD8 T Cell Numbers by Timed Enhancement of IL-2 Signals.

Marie T KimSamarchith P KurupGabriel R Starbeck-MillerJohn T Harty
Published in: Journal of immunology (Baltimore, Md. : 1950) (2016)
As a result of the growing burden of tumors and chronic infections, manipulating CD8 T cell responses for clinical use has become an important goal for immunologists. In this article, we show that dendritic cell (DC) immunization coupled with relatively early (days 1-3) or late (days 4-6) administration of enhanced IL-2 signals increase peak effector CD8 T cell numbers, but only early IL-2 signals enhance memory numbers. IL-2 signals delivered at relatively late time points drive terminal differentiation and marked Bim-mediated contraction and do not increase memory T cell numbers. In contrast, early IL-2 signals induce effector cell metabolic profiles that are more conducive to memory formation. Of note, downregulation of CD80 and CD86 was observed on DCs in vivo following early IL-2 treatment. Mechanistically, early IL-2 treatment enhanced CTLA-4 expression on regulatory T cells, and CTLA-4 blockade alongside IL-2 treatment in vivo prevented the decrease in CD80 and CD86, supporting a cell-extrinsic role for CTLA-4 in downregulating B7 ligand expression on DCs. Finally, DC immunization followed by early IL-2 treatment and anti-CTLA-4 blockade resulted in lower memory CD8 T cell numbers compared with the DC+early IL-2 treatment group. These data suggest that curtailed signaling through the B7-CD28 costimulatory axis during CD8 T cell activation limits terminal differentiation and preserves memory CD8 T cell formation; thus, it should be considered in future T cell-vaccination strategies.
Keyphrases
  • dendritic cells
  • regulatory t cells
  • working memory
  • magnetic resonance
  • magnetic resonance imaging
  • combination therapy
  • machine learning
  • cell therapy
  • smoking cessation
  • electronic health record
  • deep learning