Login / Signup

Functional redundancy between flavodiiron proteins and NDH-1 in Synechocystis sp. PCC 6803.

Lauri NikkanenAnita Santana SánchezMaria ErmakovaMatthias RögnerLaurent CournacNatalia Battchikova
Published in: The Plant journal : for cell and molecular biology (2020)
In oxygenic photosynthetic organisms, excluding angiosperms, flavodiiron proteins (FDPs) catalyze light-dependent reduction of O2 to H2 O. This alleviates electron pressure on the photosynthetic apparatus and protects it from photodamage. In Synechocystis sp. PCC 6803, four FDP isoforms function as hetero-oligomers of Flv1 and Flv3 and/or Flv2 and Flv4. An alternative electron transport pathway mediated by the NAD(P)H dehydrogenase-like complex (NDH-1) also contributes to redox hemostasis and the photoprotection of photosynthesis. Four NDH-1 types have been characterized in cyanobacteria: NDH-11 and NDH-12 , which function in respiration; and NDH-13 and NDH-14 , which function in CO2 uptake. All four types are involved in cyclic electron transport. Along with single FDP mutants (∆flv1 and Δflv3) and the double NDH-1 mutants (∆d1d2, which is deficient in NDH-11,2 and ∆d3d4, which is deficient in NDH-13,4 ), we studied triple mutants lacking one of Flv1 or Flv3, and NDH-11,2 or NDH-13,4 . We show that the presence of either Flv1/3 or NDH-11,2 , but not NDH-13,4 , is indispensable for survival during changes in growth conditions from high CO2 /moderate light to low CO2 /high light. Our results show functional redundancy between FDPs and NDH-11,2 under the studied conditions. We suggest that ferredoxin probably functions as a primary electron donor to both Flv1/3 and NDH-11,2 , allowing their functions to be dynamically coordinated for efficient oxidation of photosystem I and for photoprotection under variable CO2 and light availability.
Keyphrases
  • wild type
  • electron microscopy