Mid-Infrared Laser Generation of Zn 1-x Mn x Se and Zn 1-x Mg x Se (x ≈ 0.3) Single Crystals Co-Doped by Cr 2+ and Fe 2+ Ions-Comparison of Different Excitation Wavelengths.
Adam ŘíhaHelena JelínkováMaxim E DoroshenkoMichal JelinekJan ŠulcMichal NěmecDavid VyhlídalNazar O KovalenkoPublished in: Materials (Basel, Switzerland) (2022)
Two different mid-infrared (mid-IR) solid-state crystalline laser active media of Cr2+, Fe2+:Zn1-xMnxSe and Cr2+, Fe2+:Zn1-xMgxSe with similar amounts of manganese or magnesium ions of x ≈ 0.3 were investigated at cryogenic temperatures for three different excitation wavelengths: Q-switched Er:YLF laser at the wavelength of 1.73 μm, Q-switched Er:YAG laser at 2.94 μm, and the gain-switched Fe:ZnSe laser operated at a liquid nitrogen temperature of 78 K at ∼4.05 μm. The temperature dependence of spectral and laser characteristics was measured. Depending on the excitation wavelength and the selected output coupler, both laser systems were able to generate radiation by Cr2+ or by Fe2+ ions under direct excitation or indirectly by the Cr2+→ Fe2+ energy transfer mechanism. Laser generation of Fe2+ ions in Cr2+, Fe2+:Zn1-xMnxSe and Cr2+, Fe2+:Zn1-xMgxSe (x ≈ 0.3) crystals at the wavelengths of ∼4.4 and ∼4.8 μm at a temperature of 78 K was achieved, respectively. The excitation of Fe2+ ions in both samples by direct 2.94 μm as well as ∼4.05 μm radiation or indirectly via the Cr2+→ Fe2+ ions' energy transfer-based mechanism by 1.73 μm radiation was demonstrated. Based on the obtained results, the possibility of developing novel coherent laser systems in mid-IR regions (∼2.3-2.5 and ∼4.4-4.9 μm) based on AIIBVI matrices was presented.