Login / Signup

Configurational Analysis by Residual Dipolar Coupling Driven Floating Chirality Distance Geometry Calculations.

Stefan ImmelMatthias KöckMichael Reggelin
Published in: Chemistry (Weinheim an der Bergstrasse, Germany) (2018)
A new method implemented into a computer program (ConArch+ ) has been developed and applied to demonstrate the successful implementation of residual dipolar couplings (RDCs) in distance geometry (DG) calculations for the configurational assignment of chiral compounds. Unlike established protocols, the new approach combines floating chirality (fc) in 4D- and 3D-distance bounds driven dynamics (DDD) calculations with structural information from RDCs. Thus, relative configurations of chiral compounds were generated only by observables (e.g., NOEs, RDCs) rendering tedious evaluations of calculated structures against RDCs obsolete. We demonstrate the potential of this novel procedure by the simultaneous determination of the configuration and the conformation of three natural products, (-)-isopinocampheol (1), tubocurarine (2), and vincristine (3), as well as for diisopropylidene-β-d-fructopyranose (4).
Keyphrases