Striatum-related functional activation during reward- versus punishment-based learning in psychosis risk.
Nicole R KarcherJessica P Y HuaJohn G KernsPublished in: Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology (2019)
Psychosis is strongly related to increased striatal dopamine. However, the neural consequences of increased striatal dopamine in psychosis risk are still not fully understood. Consistent with an increase in striatal dopamine, in previous research, psychosis risk has been associated with neural EEG evidence of a greater response to unexpected reward than unexpected punishment feedback on a reversal-learning task. However, previous research has not directly examined whether psychosis risk is associated with altered striatal activation when receiving unexpected feedback on this task. There were two groups of participants: an antipsychotic medication-naive psychosis risk group (n = 21) who had both (a) extreme levels of self-reported psychotic-like beliefs and experiences and (b) interview-rated current-attenuated psychotic symptoms; and a comparison group (n = 20) who had average levels of self-reported psychotic-like beliefs and experiences. Participants completed a reversal-leaning task during fMRI scanning. As expected, in both ROI and whole-brain analyses, the psychosis risk group exhibited greater striatal activation (for whole-brain analyses, the peak was located in the right caudate) to unexpected reward than unexpected punishment feedback relative to the comparison group. These results indicate that psychosis risk is associated with a relatively increased neural sensitivity to unexpected reward than unexpected punishment outcomes and appears consistent with increased striatal dopamine. The results may help us better understand and detect striatal dysfunction in psychosis risk.