Login / Signup

Sigma-Bond Metathesis as an Unusual Asymmetric Induction Step in Rhodium-Catalyzed Enantiodivergent Synthesis of C-N Axially Chiral Biaryls.

Peiyuan WangHongli WuXue-Peng ZhangGenping HuangRobert H CrabtreeXingwei Li
Published in: Journal of the American Chemical Society (2023)
Mechanistic understanding of asymmetric induction plays a crucial role in designing new catalytic asymmetric reactions. Reported herein is atroposelective access to C-N axially chiral isoquinolones via rhodium-catalyzed C-H activation of N -alkoxy benzamides and annulation with imidoyl sulfoxonium ylides. The coupling system proceeded with excellent functional group tolerance, and different conditions were identified to afford one or the other enantiomeric product each in excellent enantioselectivity for a representative class of the sulfoxonium ylide reagent, thus making both enantiomers readily available using the same catalyst. Experimental and computational studies revealed a pathway of C-H alkylation and enantio-determining formal nucleophilic substitution-C-N cyclization that is mediated by the rhodium catalyst via σ-bond metathesis as the asymmetric induction mechanism. Computational studies indicated that the solvent-dependent enatiodivergence originated from different levels of σ-bond metathesis mediated by neutral versus cationic rhodium species.
Keyphrases
  • room temperature
  • ionic liquid
  • capillary electrophoresis
  • solid state
  • reduced graphene oxide
  • case control
  • mass spectrometry
  • carbon dioxide
  • metal organic framework
  • electron transfer
  • visible light