Login / Signup

Tailored protein encapsulation into a DNA host using geometrically organized supramolecular interactions.

Andreas SprengelPascal LillPierre StegemannKenny Bravo-RodriguezElisa-C SchöneweißMelisa MerdanovicDaniel GudnasonMikayel AznauryanLisa GamradStephan BarcikowskiElsa Sanchez-GarciaVictoria BirkedalChristos GatsogiannisMichael EhrmannBarbara Saccà
Published in: Nature communications (2017)
The self-organizational properties of DNA have been used to realize synthetic hosts for protein encapsulation. However, current strategies of DNA-protein conjugation still limit true emulation of natural host-guest systems, whose formation relies on non-covalent bonds between geometrically matching interfaces. Here we report one of the largest DNA-protein complexes of semisynthetic origin held in place exclusively by spatially defined supramolecular interactions. Our approach is based on the decoration of the inner surface of a DNA origami hollow structure with multiple ligands converging to their corresponding binding sites on the protein surface with programmable symmetry and range-of-action. Our results demonstrate specific host-guest recognition in a 1:1 stoichiometry and selectivity for the guest whose size guarantees sufficient molecular diffusion preserving short intermolecular distances. DNA nanocontainers can be thus rationally designed to trap single guest molecules in their native form, mimicking natural strategies of molecular recognition and anticipating a new method of protein caging.
Keyphrases
  • circulating tumor
  • single molecule
  • cell free
  • protein protein
  • amino acid
  • binding protein
  • water soluble
  • small molecule
  • mass spectrometry
  • nucleic acid
  • structural basis