PEGylation of Guanidinium and Indole Bearing Poly(methacrylamide)s - Biocompatible Terpolymers for pDNA Delivery.
Ceren CokcaFranz J HackDaniel CostabelKira HerwigJuliana HülsmannPatrick ThenRainer HeintzmannDagmar FischerKalina PenevaPublished in: Macromolecular bioscience (2021)
This study describes the first example for shielding of a high performing terpolymer that consists of N-(2-hydroxypropyl)methacrylamide (HPMA), N-(3-guanidinopropyl)methacrylamide (GPMA), and N-(2-indolethyl)methacrylamide monomers (IEMA) by block copolymerization of a polyethylene glycol derivative - poly(nona(ethylene glycol)methyl ether methacrylate) (P(MEO9 MA)) via reversible addition-fragmentation chain transfer (RAFT) polymerization. The molecular weight of P(MEO9 MA) is varied from 3 to 40 kg mol-1 while the comonomer content of HPMA, GPMA, and IEMA is kept comparable. The influence of P(MEO9 MA) block with various molecular weights is investigated over cytotoxicity, plasmid DNA (pDNA) binding, and transfection efficiency of the resulting polyplexes. Overall, the increase in molecular weight of P(MEO9 MA) block demonstrates excellent biocompatibility with higher cell viability in L-929 cells and an efficient binding to pDNA at N/P ratio of 2. The significant transfection efficiency in CHO-K1 cells at N/P ratio 20 is obtained for block copolymers with molecular weight of P(MEO9 MA) up to 10 kg mol-1 . Moreover, a fluorescently labeled analogue of P(MEO9 MA), bearing perylene monoimide methacrylamide (PMIM), is introduced as a comonomer in RAFT polymerization. Polyplexes consisting of labeled block copolymer with 20 kg mol-1 of P(MEO9 MA) and pDNA are incubated in Hela cells and investigated through structured illumination microscopy (SIM).