Login / Signup

The Role of Field Electron Emission in Polypropylene/Aluminum Nanodielectrics Under High Electric Fields.

Guoqiang ZhangYue LiSaide TangRhett D ThompsonLei Zhu
Published in: ACS applied materials & interfaces (2017)
Polymer/metallic particle nanocomposites or nanodielectrics can exhibit colossal dielectric constants with a relatively low dissipation factor under low electric fields and thus seem to be promising for high-energy density dielectric capacitors. To study this possibility, this work focused on the dielectric performance and loss mechanisms in polypropylene (PP)/aluminum nanoparticle (nAl NP) composites under high electric fields. Phosphonic acid-terminated poly(ethylene-co-1-butene) was grafted to the Al2O3 surface layer on the nAl NPs in order to achieve reasonable dispersion in the PP matrix. The dielectric breakdown study showed that the breakdown strength decreased to nearly 1/20 that of the neat PP film as the nAl content increased to 25.0 vol %. The leakage current study revealed three electronic conduction mechanisms in the PP/100 nm nAl nanocomposites, namely, ohmic conduction at low fields, hopping conduction at intermediate fields, and Fowler-Nordheim (FN) field electron emission above a critical field, depending on the filler content. Compared to the 100 nm nAl NPs, smaller (e.g., 18 nm) nAl NPs needed a much higher electric field to exhibit FN field electron emission. It was the FN electron tunneling that induced a substantial reduction in breakdown strength for the PP/nAl nanocomposites. Meanwhile, electron-tunneling injected space charges (electrons) from nAl NPs into the PP matrix, and internal electronic conduction led to significant dielectric nonlinearity at high poling fields. Although polymer/metallic NP composites are not suitable for high-field electric applications, they can be good candidates for electrical switches and quantum tunneling composites operated at relatively low electric fields.
Keyphrases
  • reduced graphene oxide
  • photodynamic therapy
  • gold nanoparticles
  • solar cells
  • molecular dynamics
  • single cell
  • high glucose
  • hyaluronic acid
  • electron transfer
  • room temperature
  • solid state
  • energy transfer