Login / Signup

Facile synthesis of magnetic framework composite MgFe2O4@UiO-66(Zr) and its applications in the adsorption-photocatalytic degradation of tetracycline.

The Ky VoJinsoo Kim
Published in: Environmental science and pollution research international (2021)
Recently, metal-organic framework (MOF)-based hybrid composites have attracted significant attention in photocatalytic applications. In this work, MgFe2O4@UiO-66(Zr) (MFeO@UiO) composites with varying compositions were successfully synthesized via facile in situ assemblies. Depositing the UiO-66(Zr) framework onto ferrite nanoparticles yielded a composite structure having a lower bandgap energy (2.28-2.60 eV) than that of the parent UiO-66(Zr) (~3.8 eV). Moreover, the MFeO@UiO composite exhibited magnetic separation property and improved porosity. The removal experiment for tetracycline (TC) in aqueous media revealed that the MFeO@UiO composite exhibited a high total TC removal efficiency of ca. ~94% within 45-min preadsorption and 120-min visible-light illumination, which is higher than that of pristine ferrite and UiO-66(Zr). The enhanced photodegradation efficiency of MFeO@UiO is attributed to efficient interfacial charge transfer at the heterojunction and the synergistic effect between the semiconductors. Radical scavenging experiments revealed that photogenerated holes (h+) and hydroxyl radicals (·OH) were the major reactive species involved in TC photodegradation. Moreover, the prepared MFeO@UiO nanocomposite showed good recyclability and renewability, making it a potential material for wastewater treatments.
Keyphrases
  • metal organic framework
  • visible light
  • pet imaging
  • reduced graphene oxide
  • working memory
  • wastewater treatment
  • molecularly imprinted
  • ionic liquid
  • aqueous solution
  • liquid chromatography
  • quantum dots
  • protein kinase