Login / Signup

From bitter to delicious: properties and uses of microbial aminopeptidases.

Yawei WangPuying ZhaoYing ZhouXiaomin HuHairong Xiong
Published in: World journal of microbiology & biotechnology (2023)
Protein hydrolysates are easily digested and utilized by humans and animals, and are less likely to cause allergies. Protein hydrolysis caused by endopeptidases often leads to the exposure of hydrophobic amino acids at the ends of peptides, which consequently causes bitter taste. Microbial aminopeptidases remove the exposed hydrophobic amino acids at the ends of aminopeptides, which improves taste, allowing for easier production. This processe is attacking significant attention from industry and laboratories. Aminopeptidases selectively hydrolyze peptide bonds from the N-terminal of proteins or peptides to produce free amino acids. Aminopeptidases can be classified into leucine, lysine, methionine and proline aminopeptidases by hydrolyzed N-terminal residues; metallo-, serine- and cysteine- aminopeptidases by the reaction mechanisms; dipeptide and triphoptide enzymes by the released number of amino acid residues at the end of hydrolyzed peptides; or acidic, neutral and basic aminopeptidases by their optimal hydrolysis pH. Commercial aminopeptidases are generally produced by microbial fermentation, and are mainly applied in the debittering of protein hydrolysates, the deep hydrolysis of protein, and the production of condiments, cheese, and bioactive peptides, as well as for disease detection in the medical industry.
Keyphrases
  • amino acid
  • microbial community
  • ionic liquid
  • protein protein
  • small molecule
  • multidrug resistant
  • gram negative
  • sensitive detection
  • real time pcr
  • sewage sludge