Login / Signup

Hydrophilic-Oleophobic, Macroporous Polymers Enabled by In-Situ Polymerization and Foaming for Removing Water from Oils.

Huanjie ChiZhiguang XuHui CaoTao ZhangYan Zhao
Published in: Langmuir : the ACS journal of surfaces and colloids (2023)
Porous polymers with hydrophilicity and oleophobicity are promising for removing water from various oil-water mixtures (including emulsions), but the preparation of such polymers is usually complicated and time-consuming. Herein, a novel stragey, in situ polymerization and foaming, has been developed to fabricate hydrophilic-oleophobic porous polymers in a facile manner within seconds. The porous polymers from pentaerythritol tetra(3-mercaptopropionate) and poly(ethylene glycol) diacrylate showed hydrophilicity and underwater oleophobicity, enabling the removal of water from oil-water mixtures and surfactant-stabilized, water-in-oil (w/o) emulsions, with a high efficiency of 99.9% and excellent reusability, without obvious deterioation after 10 cycles. With incorporatin of 1H,1H,2H,2H-perfluorooctyl methacrylate, the resulting porous polymers showed hydrophilicity and oleophobicty in air, providing an additional function of antioil-fouling ability both in dry state and in the process of oil-water separation. Moreover, both the two types of the porous polymers showed robust compression, without fracture and changes in wetting property after cycles of compression at 70% strain and high fatigue-resistant elasticity, without obvious plastic deformation after 1000 compression-release cycles. The facile and rapid preparation, hydrophiclity-oleophobicity, and robustness in compression and elasticity enabled the porous polymers to be good candidates for removing water from various oil-water mixtures.
Keyphrases
  • metal organic framework
  • highly efficient
  • high efficiency
  • liquid chromatography
  • physical activity
  • depressive symptoms