Investigating the Cyclability and Stability at the Interfaces of Composite Solid Electrolytes in Li Metal Batteries.
Sarah E HolmesFang LiuWenbo ZhangPhilaphon SayavongSolomon T OyakhireYi CuiPublished in: ACS applied materials & interfaces (2022)
Despite the fact that much work has been dedicated to finding the ideal additive for composite solid electrolytes (CSEs) for lithium-based solid-state batteries, little is known about the properties of a CSE that enable stable cycling with a lithium metal anode. In this work, we use three CSEs based on lithium nitride (Li 3 N), a fast lithium-ion conductor, and lithium hydroxide (LiOH) to investigate the properties and interfacial interactions that impact the cyclability of CSEs. We present a method for stabilizing Li 3 N with a shell of LiOH, and we incorporate Li 3 N, core-shell particles, and LiOH into CSEs using polyethylene oxide (PEO) and lithium bis(trifluoromethanesulfonyl)imide. Through improved interfacial chemistry, CSEs with core-shell particles have superior electrochemical cycling performance compared to those with unprotected Li 3 N in symmetric Li-Li cells. This CSE features a high ionic conductivity of 0.66 mS cm -1 at 60 °C, a high critical current density of 1.2 mA cm -2 , and a wide voltage window of 0-5.1 V. Full cells with the core-shell CSE and lithium iron phosphate cathodes exhibit stable cycling and high reversible specific capacities in cells as high as 2.5 mAh cm -2 . We report that the improved ionic conductivity and amorphous PEO content have a limited effect on the solid-state electrolyte performance, while improving the electrolyte-Li metal anode interface is key to cycling longevity.