Elaboration of Trans-Resveratrol Derivative-Loaded Superparamagnetic Iron Oxide Nanoparticles for Glioma Treatment.
Fadoua SallemRihab HajiDominique Vervandier-FasseurThomas NuryLionel MauriziJulien BoudonGérard LizardNadine MillotPublished in: Nanomaterials (Basel, Switzerland) (2019)
In this work, new nanohybrids based on superparamagnetic iron oxide nanoparticles (SPIONs) were elaborated and discussed for the first time as nanovectors of a derivative molecule of trans-resveratrol (RSV), a natural antioxidant molecule, which can be useful for brain disease treatment. The derivative molecule was chemically synthesized (4'-hydroxy-4-(3-aminopropoxy) trans-stilbene: HAPtS) and then grafted onto SPIONs surface using an organosilane coupling agent, which is 3-chloropropyltriethoxysilane (CPTES) and based on nucleophilic substitution reactions. The amount of HAPtS loaded onto SPIONs surface was estimated by thermogravimetric analysis (TGA) and X-ray photoelectron spectroscopy (XPS) analyses at 116 µmol·g-1 SPIONs. The synthesized HAPtS molecule, as well as the associated nanohybrids, were fully characterized by transmission electron microscopy (TEM), XPS, TGA, infrared (IR) and UV-visible spectroscopies, dynamic light scattering (DLS), and zeta potential measurements. The in vitro biological assessment of the synthesized nanohybrid's efficiency was carried out on C6 glioma cells and showed that the nanovector SPIONs-CPTES-HAPtS do not affect the mitochondrial metabolism (MTT test), but damage the plasma membrane (FDA test), which could contribute to limiting the proliferation of cancerous cells (clonogenic test) at a HAPtS concentration of 50 µM. These nanoparticles have a potential cytotoxic effect that could be used to eliminate cancer cells.
Keyphrases
- iron oxide nanoparticles
- oxidative stress
- electron microscopy
- drug delivery
- reduced graphene oxide
- high resolution
- induced apoptosis
- computed tomography
- magnetic resonance imaging
- multiple sclerosis
- gold nanoparticles
- wound healing
- risk assessment
- brain injury
- magnetic resonance
- cell cycle arrest
- smoking cessation
- water soluble
- ionic liquid
- blood brain barrier
- human health
- replacement therapy
- cell death
- subarachnoid hemorrhage