Chest x-ray (CXR) is one of the most commonly used imaging techniques for the detection and diagnosis of pulmonary diseases. One critical component in many computer-aided systems, for either detection or diagnosis in digital CXR, is the accurate segmentation of the lung. Due to low-intensity contrast around lung boundary and large inter-subject variance, it has been challenging to segment lung from structural CXR images accurately. In this work, we propose an automatic Hybrid Segmentation Network (H-SegNet) for lung segmentation on CXR. The proposed H-SegNet consists of two key steps: (1) an image preprocessing step based on a deep learning model to automatically extract coarse lung contours; (2) a refinement step to fine-tune the coarse segmentation results based on an improved principal curve-based method coupled with an improved machine learning method. Experimental results on several public datasets show that the proposed method achieves superior segmentation results in lung CXRs, compared with several state-of-the-art methods.
Keyphrases
- deep learning
- convolutional neural network
- machine learning
- artificial intelligence
- high resolution
- molecular dynamics
- magnetic resonance
- molecular dynamics simulations
- mental health
- loop mediated isothermal amplification
- photodynamic therapy
- air pollution
- sensitive detection
- label free
- optical coherence tomography
- big data
- quantum dots
- drug induced
- network analysis