Strigolactone Analogues Derived from Dihydroflavonoids as Potent Seed Germinators for the Broomrapes.
Yunyao KangZhili PangNiuniu XuFangjie ChenZhong JinXiaohua XuPublished in: Journal of agricultural and food chemistry (2020)
The broomrapes (Orobanche and Phelipanche spp.) and witchweeds (Striga spp.) are a class of parasitic weeds, which are distributed widely in the tropical, subtropical, and temperate areas of the globe. Since they have completely consistent lifecycles with the host plants, it is difficult to control them selectively through using the conventional herbicides. Inducing suicidal germination of these weed seeds by small molecular signaling agents proved to be a promising strategy for the management of parasitic weeds. As a class of naturally occurring terpenoid metabolites, strigolactones (SLs) show significant biological activities including stimulation germination of weed seeds, inhibition of shoot-branching, and so on. However, the widespread application of these natural SLs is greatly limited by their extremely low natural abundance and complex molecular structures. Design and synthesis of the simplified analogues as natural SLs alternatives provide a viable avenue for the efficient control of these parasitic weeds. We herein disclose the development of a novel class of SLs analogues derived from dihydroflavonoids as potent seed germinators of parasitic weeds. It was shown that one of them displayed a higher potential toward the seed germination of the broomrapes than the positive control GR24. The structure-activity relationship of these SLs analogues was further validated on the basis of the binding affinity experiment to strigolactone receptor protein HTL7 by using a YLG fluorescent probe method.