Harmonic wideband simultaneous dual-frequency MR Elastography.
Pilar Sango SolanasKevin Tse Ve KoonHelene RatineyFabien MilliozCyrielle CaussyOlivier BeufPublished in: NMR in biomedicine (2020)
Magnetic resonance elastography (MRE) is used to non-invasively quantify viscoelastic properties of tissues based on the measurement of propagation characteristics of shear waves. Because some of these viscoelastic parameters show a frequency dependence, multifrequency analysis allows us to measure the wave propagation dispersion, leading to a better characterization of tissue properties. Conventionally, motion encoding gradients (MEGs) oscillating at the same frequency as the mechanical excitation encode motion. Hence, multifrequency data is usually obtained by sequentially repeating monochromatic wave excitations experiments at different frequencies. The result is that the total acquisition time is multiplied by a factor corresponding to the number of repetitions of monofrequency experiments, which is a major limitation of multifrequency MRE. In order to make it more accessible, a novel single-shot harmonic wideband dual-frequency MRE method is proposed. Two superposed shear waves of different frequencies are simultaneously generated and propagate in a sample. Trapezoidal oscillating MEGs are used to encode mechanical vibrations having frequencies that are an odd multiple of the MEG frequency. The number of phase offsets is optimized to reduce the acquisition time. For this purpose, a sampling method not respecting the Shannon theorem is used to produce a controlled temporal aliasing that allows us to encode both frequencies without any additional examination time. Phantom experiments were run to compare conventional monofrequency MRE with the single-shot dual-frequency MRE method and showed excellent agreement between the reconstructed shear storage moduli G'. In addition, dual-frequency MRE yielded an increased signal-to-noise ratio compared with conventional monofrequency MRE acquisitions when encoding the high frequency component. The novel proposed multifrequency MRE method could be applied to simultaneously acquire more than two frequency components, reducing examination time. Further studies are needed to confirm its applicability in preclinical and clinical models.