Login / Signup

Synthetic Chemotaxis and Collective Behavior in Active Matter.

Benno LiebchenHartmut Löwen
Published in: Accounts of chemical research (2018)
The ability to navigate in chemical gradients, called chemotaxis, is crucial for the survival of microorganisms. It allows them to find food and to escape from toxins. Many microorganisms can produce the chemicals to which they respond themselves and use chemotaxis for signaling, which can be seen as a basic form of communication, allowing ensembles of microorganisms to coordinate their behavior, for example, during embryogenesis, biofilm formation, or cellular aggregation. For example, Dictyostelium cells use signaling as a survival strategy: when starving, they produce certain chemicals toward which other cells show taxis. This leads to aggregation of the cells resulting in a multicellular aggregate that can sustain long starvation periods. Remarkably, the past decade has led to the development of synthetic microswimmers, which can self-propel through a solvent, analogously to bacteria and other microorganisms. The mechanism underlying the self-propulsion of synthetic microswimmers like camphor boats, droplet swimmers, and in particular autophoretic Janus colloids involves the production of certain chemicals. As we will discuss in this Account, the same chemicals (phoretic fields) involved in the self-propulsion of a (Janus) microswimmer also act on other ones and bias their swimming direction toward (or away from) the producing microswimmer. Synthetic microswimmers therefore provide a synthetic analogue to motile microorganisms interacting by taxis toward (or away from) self-produced chemical fields. In this Account, we review recent progress in the theoretical description of synthetic chemotaxis mainly based on simulations and field theoretical descriptions. We will begin with single motile particles leaving chemical trails behind with which they interact themselves, leading to effects like self-trapping or self-avoidance. Besides these self-interactions, in ensembles of synthetic motile particles each particle also responds to the chemicals produced by other particles, inducing chemical (or phoretic) cross-interactions. When these interactions are attractive, they commonly lead to clusters, even at low particle density. These clusters may either proceed toward macrophase separation, resembling Dictyostelium aggregation, or, as shown very recently, lead to dynamic clusters of self-limited size (dynamic clustering) as seen in experiments in autophoretic Janus colloids. Besides the classical case where chemical interactions are attractive, this Account discusses, as its main focus, repulsive chemical interactions, which can create a new and less known avenue to pattern formation in active systems leading to a variety of pattern, including clusters which are surrounded by shells of chemicals, traveling waves and more complex continuously reshaping patterns. In all these cases "synthetic signalling" can crucially determine the collective behavior of synthetic microswimmer ensembles and can be used as a design principle to create patterns in motile active particles.
Keyphrases