Polarized Upconversion of sub-100 nm Single Nanoparticles.
Yangjian CaiYunfei ShangMing LuDayong JinJiajia ZhouPublished in: Nano letters (2024)
Upconversion nanoparticles are popular as imaging probes due to their advantages in photostability and controllable emission dimensions. However, upconversion polarization remains largely uncharted with previous reports limited to microstructures. In this work, we report the observation of polarized upconversion emissions from β-NaYF 4 single nanostructures below 100 nm. At the sub-100 nm scale, nanorods, nanodiscs, and nanoplates exhibit distinctive polarization degrees despite the same doping concentrations of lanthanides. We find this varied polarization degree results from the crystallographic orientation of nanostructure in relation to the light field and can be linked to the distinctive emission spectrum profile with varied Stark splitting transition ratios from Er 3+ . Our findings provide a comprehensive understanding of the polarization properties of upconversion nanoparticles, revealing a previously unexplored aspect of light emission. This discovery expands our knowledge of upconversion nanoparticles and also opens new possibilities for their use in future imaging and sensing applications, where polarization sensitivity is crucial.