Enantioselective phosphine-catalyzed [6 + 1] annulations of α-allyl allenoates with 1,1-bisnucleophiles.
Jingxiong LaiWei CaiYou HuangPublished in: Chemical science (2024)
Organocatalytic annulations between allenes and bisnucleophiles represent one of the most convenient routes to various carbocycles and heterocycles. However, most examples are limited to the formation of five- and six-membered rings, probably owing to relatively easy handling of short-chained biselectrophiles. Here we report long-chained α-allyl allenoate-derived 1,6-biselectrophiles for the first time, enabling a phosphine catalyzed [6 + 1] annulation with readily available 1,1-bisnucleophilic reagents. The reaction proceeds via a tandem γ-umpolung addition and δ'-addition process, smoothly constructing both seven-membered N-heterocycles and carbocycles with a broad scope of substrates, high atom economy and excellent enantioselectivity (up to 99% yield and up to 96% ee). Mechanistic experiments revealed a conversion of the 1,6-dipole into a 1,6-biselectrophilic intermediate through proton abstraction.