Machine-Learned Coarse-Grained Models.
Karteek K BejagamSamrendra SinghYaxin AnSanket A DeshmukhPublished in: The journal of physical chemistry letters (2018)
Optimizing force-field (FF) parameters to perform molecular dynamics (MD) simulations is a challenging and time-consuming process. We present a novel FF optimization framework that integrates MD simulations with particle swarm optimization (PSO) algorithm and artificial neural network (ANN). This new ANN-assisted PSO framework was used to develop transferable coarse-grained (CG) models for D2O and DMF as a proof of concept. The PSO algorithm was used to generate the set of input FF parameters for the MD simulations of the CG models of these solvents, which were optimized to reproduce their experimental properties. Herein, for the first time, a reverse approach was employed for on-the-fly training of the ANN model, where results (solvent properties) obtained from the MD simulations and their corresponding FF parameters were used as inputs and outputs, respectively. The ANN model was then required to predict a set of new FF parameters, which were tested for their ability to predict the desired experimental properties. This new framework can be extended to integrate any optimization algorithm with ANN and MD simulations to accelerate the FF development.