Login / Signup

Sustainable, Green, and Continuous Synthesis of Fivefold Palladium Nanorods Using l-Ascorbic Acid in a Segmented Millifluidic Flow Reactor.

Vindula Basnayake PussepitiyalageShohreh Hemmati
Published in: Langmuir : the ACS journal of surfaces and colloids (2022)
Pd nanorods (PdNRs) have recently come to attention due to their wide array of applications. The green synthesis of PdNR with a relatively high yield and high aspect ratio is challenging. A continuous millifluidic flow reactor (CMFR) has been explored to precisely control mass and heat transfer as well as mixing in the PdNR synthesis processes. CMFRs demonstrate a few drawbacks, such as the presence of parabolic velocity profile in the laminar flow of the reaction solution, causing uneven axial residence time distribution. The CMFRs are likely to show irreversible fouling, which may cause the product quality to deteriorate or result in the channel being clogged. These shortcomings can be avoided or minimized using a segmented millifluidic flow reactor (SMFR) that consists of the solution forming a train of individual segments in another inert medium. This study explores the use of a sustainable reducing agent (l-ascorbic acid) in the presence of potassium bromide (KBr) as the capping agent and poly(vinyl pyrrolidone) (PVP) as the stabilizing agent for PdNR synthesis in an SMFR employing compartmentalized flow of a reaction solution, in which liquid segments consisting of a reaction solution will be immersed in the steam generated by boiling of the solvent water. The effect of reaction parameters such as reagent concentration has been studied on the size and morphology of synthesized Pd nanostructures. A kinetic study has been conducted to calculate the rate of reduction that can be used as a quantitative measure for manipulation of the type and relative concentration of initially formed seeds. It has been shown that the initial reduction rate during the first 45 min of residence time of the millifluidic reactor is about 66% faster compared to the rest of the reaction. A filtration procedure has been utilized to separate Pd nanostructures other than nanorods synthesized in the SMFR.
Keyphrases
  • wastewater treatment
  • reduced graphene oxide
  • anaerobic digestion
  • electron transfer
  • high resolution
  • solid state
  • ionic liquid
  • working memory
  • blood flow
  • solar cells