Targeted crystallization of mixed-charge nanoparticles in lysosomes induces selective death of cancer cells.
Magdalena BorkowskaMarta SiekDiana V KolyginaYaroslav I SobolevSlawomir LachSumit KumarYoon-Kyoung ChoKristiana Kandere-GrzybowskaBartosz A GrzybowskiPublished in: Nature nanotechnology (2020)
Lysosomes have become an important target for anticancer therapeutics because lysosomal cell death bypasses the classical caspase-dependent apoptosis pathway, enabling the targeting of apoptosis- and drug-resistant cancers. However, only a few small molecules-mostly repurposed drugs-have been tested so far, and these typically exhibit low cancer selectivity, making them suitable only for combination therapies. Here, we show that mixed-charge nanoparticles covered with certain ratios of positively and negatively charged ligands can selectively target lysosomes in cancerous cells while exhibiting only marginal cytotoxicity towards normal cells. This selectivity results from distinct pH-dependent aggregation events, starting from the formation of small, endocytosis-prone clusters at cell surfaces and ending with the formation of large and well-ordered nanoparticle assemblies and crystals inside cancer lysosomes. These assemblies cannot be cleared by exocytosis and cause lysosome swelling, which gradually disrupts the integrity of lysosomal membranes, ultimately impairing lysosomal functions and triggering cell death.
Keyphrases
- cell cycle arrest
- cell death
- drug resistant
- induced apoptosis
- pi k akt
- papillary thyroid
- endoplasmic reticulum stress
- multidrug resistant
- oxidative stress
- squamous cell
- acinetobacter baumannii
- signaling pathway
- cell proliferation
- stem cells
- single cell
- small molecule
- escherichia coli
- cell therapy
- living cells
- lymph node metastasis
- bone marrow
- fluorescent probe