Login / Signup

Buildup and bistability in auditory streaming as an evidence accumulation process with saturation.

Quynh-Anh NguyenJohn RinzelRodica Curtu
Published in: PLoS computational biology (2020)
A repeating triplet-sequence ABA- of non-overlapping brief tones, A and B, is a valued paradigm for studying auditory stream formation and the cocktail party problem. The stimulus is "heard" either as a galloping pattern (integration) or as two interleaved streams (segregation); the initial percept is typically integration then followed by spontaneous alternations between segregation and integration, each being dominant for a few seconds. The probability of segregation grows over seconds, from near-zero to a steady value, defining the buildup function, BUF. Its stationary level increases with the difference in tone frequencies, DF, and the BUF rises faster. Percept durations have DF-dependent means and are gamma-like distributed. Behavioral and computational studies usually characterize triplet streaming either during alternations or during buildup. Here, our experimental design and modeling encompass both. We propose a pseudo-neuromechanistic model that incorporates spiking activity in primary auditory cortex, A1, as input and resolves perception along two network-layers downstream of A1. Our model is straightforward and intuitive. It describes the noisy accumulation of evidence against the current percept which generates switches when reaching a threshold. Accumulation can saturate either above or below threshold; if below, the switching dynamics resemble noise-induced transitions from an attractor state. Our model accounts quantitatively for three key features of data: the BUFs, mean durations, and normalized dominance duration distributions, at various DF values. It describes perceptual alternations without competition per se, and underscores that treating triplets in the sequence independently and averaging across trials, as implemented in earlier widely cited studies, is inadequate.
Keyphrases
  • working memory
  • transcription factor
  • high glucose
  • energy transfer
  • machine learning
  • diabetic rats
  • artificial intelligence
  • monte carlo