Login / Signup

Bandgap Engineering of Lead-Free Double Perovskite Cs2AgInCl6 Nanocrystals via Cu2+-Doping.

Qiaohui LiaoJielin ChenLiya ZhouTingting WeiLe ZhangDi ChenFurong HuangQi PangJin Zhong Zhang
Published in: The journal of physical chemistry letters (2020)
Lead-free double perovskites (DPs) with excellent moisture, light, and heat stability have been explored as alternatives to toxic lead halide perovskite (APbX3) (A for monovalent cation and X for Cl, Br, or I). However, the bandgaps of the current DPs are generally larger and either indirect or direct forbidden, which leads to weak visible light absorption and limitation for photovoltaic and other optoelectronic applications. Herein, we demonstrate the first synthesis of Cu2+-doped Cs2AgInCl6 double perovskite nanocrystals via a facile hot-injection solution approach. The electronic bandgap can be dramatically tuned from ∼3.60 eV (Cs2AgInCl6, parent) to ∼2.19 eV (Cu2+-doped Cs2AgInCl6) by varying the Cu2+ doping amount. We conclude that the decrease of bandgap is attributed to the overlap of the Ag-d/In-p/Cl-p orbitals and the Cu-3d orbitals in the valence band. The wide tunability of the optical and electronic properties makes Cu2+-Doped Cs2AgInCl6 DP NCs promising candidates for future optoelectronic device applications.
Keyphrases