Optical Monitoring of the Magnetization Switching of Single Synthetic-Antiferromagnetic Nanoplatelets with Perpendicular Magnetic Anisotropy.
Subhasis AdhikariJ LiYonghui WangL RuijsJ LiuBert KoopmansMichel OrritReinoud LavrijsenPublished in: ACS photonics (2023)
Synthetic antiferromagnetic nanoplatelets (NPs) with a large perpendicular magnetic anisotropy (SAF-PMA NPs) have a large potential in future local mechanical torque-transfer applications for e.g., biomedicine. However, the mechanisms of magnetization switching of these structures at the nanoscale are not well understood. Here, we have used a simple and relatively fast single-particle optical technique that goes beyond the diffraction limit to measure photothermal magnetic circular dichroism (PT MCD). This allows us to study the magnetization switching as a function of applied magnetic field of single 122 nm diameter SAF-PMA NPs with a thickness of 15 nm. We extract and discuss the differences between the switching field distributions of large ensembles of NPs and of single NPs. In particular, single-particle PT MCD allows us to address the spatial and temporal heterogeneity of the magnetic switching fields of the NPs at the single-particle level. We expect this new insight to help understand better the dynamic torque transfer, e.g., in biomedical and microfluidic applications.