Login / Signup

Short- and Long-Range Solvation Effects on the Transient UV-Vis Absorption Spectra of a Ru(II)-Polypyridine Complex Disentangled by Nonequilibrium Molecular Dynamics.

Giacomo PrampoliniFrancesca IngrossoJavier CerezoAlessandro IagattiPaolo FoggiMariachiara Pastore
Published in: The journal of physical chemistry letters (2019)
Evidence of subtle effects in the dynamic reorganization of a protic solvent in its first- and farther-neighbor shells, in response to the sudden change in the solute's electronic distribution upon excitation, is unveiled by a multilevel computational approach. Through the combination of nonequilibrium molecular dynamics and quantum mechanical calculations, the experimental time evolution of the transient T1 absorption spectra of a heteroleptic Ru(II)-polypyridine complex in ethanol or dimethyl sulfoxide solution is reproduced and rationalized in terms of both fast and slow solvent re-equilibration processes, which are found responsible for the red shift and broadening experimentally observed only in the protic medium. Solvent orientational correlation functions and a time-dependent analysis of the solvation structure confirm that the initial, fast observed red shift can be traced back to the destruction-formation of hydrogen bond networks in the first-neighbor shell, whereas the subsequent shift, evident in the [20-500] ps range and accompanied by a large broadening of the signal, is connected to a collective reorientation of the second and farther solvation shells, which significantly changes the electrostatic embedding felt by the excited solute.
Keyphrases
  • molecular dynamics
  • ionic liquid
  • density functional theory
  • energy transfer
  • cerebral ischemia
  • quantum dots
  • subarachnoid hemorrhage
  • brain injury
  • solid state