Post mortem findings and their relation to AA amyloidosis in free-ranging Herring gulls (Larus argentatus).
Désirée Seger JanssonCaroline BröjerAleksija NeimanisTorsten MörnerCharles L MurphyFaruk OtmanPer WestermarkPublished in: PloS one (2018)
Since the late 1990s, high mortality and declining populations have been reported among sea birds including Herring gulls (Larus argentatus) from the Baltic Sea area in Northern Europe. Repeated BoNT type C/D botulism outbreaks have occurred, but it remains unclear whether this is the sole and primary cause of mortality. Thiamine deficiency has also been suggested as a causal or contributing factor. With this study, we aimed to investigate gross and microscopic pathology in Herring gulls from affected breeding sites in Sweden in search of contributing diseases. Herring gulls from Iceland served as controls. Necropsies and histopathology were performed on 75 birds, of which 12 showed signs of disease at the time of necropsy. Parasites of various classes and tissues were commonly observed independent of host age, e.g. oesophageal capillariosis and nematode infection in the proventriculus and gizzard with severe inflammation, air sac larid pentastomes and bursal trematodiasis in pre-fledglings. Gross and microscopic findings are described. Notably, amyloidosis was diagnosed in 93 and 33% of the adult birds from Sweden and Iceland, respectively (p<0.001), with more pronounced deposits in Swedish birds (p<0.001). Gastrointestinal deposits were observed in the walls of arteries or arterioles, and occasionally in villi near the mucosal surface. Amyloid was identified within the intestinal lumen in one severely affected gull suggesting the possibility of oral seeding and the existence of a primed state as previously described in some mammals and chickens. This could speculatively explain the high occurrence and previously reported rapid onset of amyloidosis upon inflammation or captivity in Herring gulls. Amyloid-induced malabsorbtion is also a possibility. The Herring gull SAA/AA protein sequence was shown to be highly conserved but differed at the N-terminus from other avian species.
Keyphrases
- oxidative stress
- cardiovascular events
- multiple myeloma
- risk factors
- early onset
- risk assessment
- diabetic rats
- transcription factor
- type diabetes
- coronary artery disease
- children with cerebral palsy
- disease virus
- cardiovascular disease
- amino acid
- heat stress
- replacement therapy
- young adults
- small molecule
- protein protein
- sensitive detection
- binding protein