Login / Signup

Self-Assembled Cyclic Structures from Copper(II) Peptoids.

Totan GhoshNatalia FridmanMonica KosaGalia Maayan
Published in: Angewandte Chemie (International ed. in English) (2018)
Metal-ligand coordination is a key interaction in the self-assembly of both biopolymers and synthetic oligomers. Although the binding of metal ions to synthetic proteins and peptides is known to yield high-order structures, the self-assembly of peptidomimetic molecules upon metal binding is still challenging. Herein we explore the self-assembly of three peptoid trimers bearing a bipyridine ligand at their C-terminus, a benzyl group at their N-terminus, and a polar group (N-ethyl-R) in the middle position (R=OH, OCH3 , or NH2 ) upon Cu2+ coordination. X-ray diffraction analysis revealed unique, highly symmetric, dinuclear cyclic structure or aqua-bridged dinuclear double-stranded peptoid helicates, formed by the self-assembly of two peptoid molecules with two Cu2+ ions. Only the macrocycle with the highest number of intermolecular hydrogen bonds is stable in solution, while the other two disassemble to their corresponding monometallic complexes.
Keyphrases
  • aqueous solution
  • high resolution
  • binding protein
  • quantum dots
  • single cell
  • magnetic resonance imaging
  • amino acid
  • electron microscopy
  • dual energy
  • crystal structure
  • solid state
  • nucleic acid
  • oxide nanoparticles