Lower Extremity Muscle Activation in Alternative Footwear during Stance Phase of Slip Events.
Harish ChanderJohn C GarnerChip WadeAdam C KnightPublished in: International journal of environmental research and public health (2021)
Muscle activity from the slipping leg have been previously used to analyze slip induced falls. However, the impact of casual alternative footwear on slipping leg muscle activity when exposed to slippery environments is still unknown. The purpose of the study was to analyze the impact of alternative footwear (crocs (CC) and flip-flops (FF)) compared to slip-resistant footwear (LT) on lower extremity muscle activity when exposed to dry gait (NG), unexpected (US), alert (AS), and expected slips (ES). Eighteen healthy males (age: 22.3 ± 2.2 years; height: 177.7 ± 6.9 cm; weight: 79.3 ± 7.6 kg) completed the study in a repeated measures design in three footwear sessions separated by 48 h. Electromyography (EMG) muscle activity from four muscles of the lead/slipping leg was measured during the stance phase of the gait-slip trials. A 3 (footwear) × 4 (gait-slip trials) repeated measures analysis of variance was used to analyze EMG dependent variables mean, peak, and percent of maximal voluntary contraction. Greater lower extremity muscle activation during the stance phase was seen in US and AS conditions compared to NG and ES. In addition, footwear differences were seen for the alternative footwear (CC and FF) during US and AS, while the low top slip resistant shoe had no differences across all gait trials, suggesting it as the most efficient footwear of choice, especially when maneuvering slippery flooring conditions, either with or without the knowledge of an impending slip.