Login / Signup

Pharmacokinetics of Tamoxifen and Its Major Metabolites and the Effect of the African Ancestry Specific CYP2D6*17 Variant on the Formation of the Active Metabolite, Endoxifen.

Comfort Ropafadzo KanjiGeorginah NyabadzaCharles NhachiCollen Masimirembwa
Published in: Journal of personalized medicine (2023)
Tamoxifen (TAM) is widely used in the treatment of hormone receptor-positive breast cancer. TAM is metabolized into the active secondary metabolite endoxifen (ENDO), primarily by CYP2D6. We aimed to investigate the effects of an African-specific CYP2D6 variant allele, CYP2D6* 17, on the pharmacokinetics (PK) of TAM and its active metabolites in 42 healthy black Zimbabweans. Subjects were grouped based on CYP2D6 genotypes as CYP2D6*1/*1 or *1/*2 or *2/*2 (CYP2D6*1 or *2), CYP2D6*1/*17 or 2*/*17, and CYP2D6*17/*17. PK parameters for TAM and three metabolites were determined. The pharmacokinetics of ENDO showed statistically significant differences among the three groups. The mean ENDO AUC 0-∞ in CYP2D6*17/*17 subjects was 452.01 (196.94) h·*ng/mL, and the AUC0-∞ in CYP2D6*1/*17 subjects was 889.74 h·ng/mL, which was 5-fold and 2.8-fold lower than in CYP2D6*1 or *2 subjects, respectively. Individuals who were heterozygous or homozygous for CYP2D6*17 alleles showed a 2- and 5-fold decrease in Cmax, respectively, compared to the CYP2D6*1 or *2 genotype. CYP2D6*17 gene carriers have significantly lower ENDO exposure levels than CYP2D6*1 or *2 gene carriers. Pharmacokinetic parameters of TAM and the two primary metabolites, N-desmethyl tamoxifen (NDT) and 4-hydroxy tamoxifen (4OHT), did not show any significant difference in the three genotype groups. The African-specific CYP2D6*17 variant had effects on ENDO exposure levels that could potentially have clinical implications for patients homozygous for this variant.
Keyphrases
  • positive breast cancer
  • ms ms
  • dna methylation
  • genome wide
  • transcription factor
  • copy number