Carbon Nanotube Chirality Determines Properties of Encapsulated Linear Carbon Chain.
Sebastian HeegRolf LortzLisa V PoulikakosThomas PichlerLukas NovotnyPublished in: Nano letters (2018)
Long linear carbon chains (LLCCs) encapsulated inside double-walled carbon nanotubes (DWCNTs) are regarded as a promising realization of carbyne, the truly one-dimensional allotrope of carbon. While the electronic and vibronic properties of the encapsulated LLCC are expected to be influenced by its nanotube host, this dependence has not been investigated experimentally so far. Here we bridge this gap by studying individual LLCCs encapsulated in DWCNTs with tip-enhanced Raman scattering (TERS). We reveal that the nanotube host, characterized by its chirality, determines the vibronic and electronic properties of the encapsulated LLCC. By choice of chirality, the fundamental Raman mode (C-mode) of the chain is tunable by ∼95 cm-1 and its band gap by ∼0.6 eV, suggesting this one-dimensional hybrid system to be a promising building block for nanoscale optoelectronics. No length dependence of the chain's C-mode frequency is evident, making LLCCs a close to perfect representation of carbyne.