Login / Signup

Characterization of RNA Editome in the Mammary Gland of Yaks during the Lactation and Dry Periods.

Xiaoyun WuWondossen AyalewMin ChuJie PeiChunnian LiangPengjia BaoXian GuoPing Yan
Published in: Animals : an open access journal from MDPI (2022)
The mammary gland is a complicated organ comprising several types of cells, and it undergoes extensive morphogenetic and metabolic changes during the female reproductive cycle. RNA editing is a posttranscriptional modification event occurring at the RNA nucleotide level, and it drives transcriptomic and proteomic diversities, with potential functional consequences. RNA editing in the mammary gland of yaks, however, remains poorly understood. Here, we used REDItools to identify RNA editing sites in mammary gland tissues in yaks during the lactation period (LP, n = 2) and dry period (DP, n = 3). Totally, 82,872 unique RNA editing sites were identified, most of which were detected in the noncoding regions with a low editing degree. In the coding regions (CDS), we detected 5235 editing sites, among which 1884 caused nonsynonymous amino acid changes. Of these RNA editing sites, 486 were found to generate novel possible miRNA target sites or interfere with the initial miRNA binding sites, indicating that RNA editing was related to gene regulation mediated by miRNA. A total of 14,159 RNA editing sites (involving 3238 common genes) showed a significant differential editing level in the LP when compared with that in the DP through Tukey's Honest Significant Difference method ( p < 0.05). According to the Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, genes that showed different RNA editing levels mainly participated in pathways highly related to mammary gland development, including MAPK, PI3K-Akt, FoxO, and GnRH signaling pathways. Collectively, this work demonstrated for the first time the dynamic RNA editome profiles in the mammary gland of yaks and shed more light on the mechanism that regulates lactation together with mammary gland development.
Keyphrases
  • crispr cas
  • pi k akt
  • signaling pathway
  • nucleic acid
  • cell cycle arrest
  • gene expression
  • induced apoptosis
  • human milk
  • cell death
  • epithelial mesenchymal transition
  • dna methylation
  • drug induced