Login / Signup

Two-dimensional aluminium, gallium, and indium metallic crystals by first-principles design.

Bushra Anam KhalilNicola Gaston
Published in: Journal of physics. Condensed matter : an Institute of Physics journal (2020)
Rapidly emerging two-dimensional (2D) atomic layer crystals exhibit diverse, tunable electronic properties. They appear to be more flexible than 3D crystals with greater versatility and improved functionality in wide range of potential applications. Among these 2D materials, metallic crystals are relatively unexplored although two allotropes of gallenene (2D gallium) have been synthesized on a range of substrates. Based on these experimental findings, we investigate systematically the group 13 metals using first-principles density functional theory calculations and an unbiased structural search. In this studies, the electronic structure, bonding characteristics, and phonon properties of predicted 2D allotropes of group 13 metals are calculated including the expected effects of strain induced by substrates on the dynamical stability. Theoretical results predict that most group 13 elements have one or more stable 2D allotropes with the preferred allotrope depending on the cell shape relaxation and strain, indicating that the substrate will determine the overall allotrope preferred. This demonstrates a new avenue for the discovery of thermodynamically stable 2D metallic layers, with properties potentially suitable for electronic and optoelectronic applications.
Keyphrases
  • density functional theory
  • molecular dynamics
  • room temperature
  • human health
  • small molecule
  • health risk
  • single cell
  • cell therapy
  • high throughput
  • stem cells
  • single molecule
  • health risk assessment
  • heavy metals