Login / Signup

Manganese Efflux Achieved by MetA and MetB Affects Oxidative Stress Resistance and Iron Homeostasis in Riemerella anatipestifer.

Fang GuoMengying WangMi HuangYin JiangQun GaoDekang ZhuMingshu WangRenyong JiaShun ChenXinxin ZhaoQiao YangYing WuShaqiu ZhangJuan HuangBin TianXumin OuSai MaoDi SunAn-Chun ChengQinyuan Chen
Published in: Applied and environmental microbiology (2023)
In bacteria, manganese homeostasis is controlled by import, regulation, and efflux. Here, we identified 2 Mn exporters, MetA and MetB (manganese efflux transporters A and B), in Riemerella anatipestifer CH-1, encoding a putative cation diffusion facilitator (CDF) protein and putative resistance-nodulation-division (RND) efflux pump, respectively. Compared with the wild type (WT), ΔmetA, ΔmetB , and ΔmetAΔmetB exhibited sensitivity to manganese, since they accumulated more intracellular Mn 2+ than the WT under excess manganese conditions, while the amount of iron in the mutants was decreased. Moreover, ΔmetA, ΔmetB , and ΔmetAΔmetB were more sensitive to the oxidant NaOCl than the WT. Further study showed that supplementation with iron sources could alleviate manganese toxicity and that excess manganese inhibited bacterial cell division. RNA-Seq showed that manganese stress resulted in the perturbation of iron metabolism genes, further demonstrating that manganese efflux is critical for iron homeostasis. metA transcription was upregulated under excess manganese but was not activated by MetR, a DtxR family protein, although MetR was also involved in manganese detoxification, while metB transcription was downregulated under iron depletion conditions and in fur mutants. Finally, homologues of MetA and MetB were found to be mainly distributed in members of Flavobacteriaceae . Specifically, MetB represents a novel manganese exporter in Gram-negative bacteria. IMPORTANCE Manganese is required for the function of many proteins in bacteria, but in excess, manganese can mediate toxicity. Therefore, the intracellular levels of manganese must be tightly controlled. Manganese efflux transporters have been characterized in some other bacteria; however, their homologues could not be found in the genome of Riemerella anatipestifer through sequence comparison. This indicated that other types of manganese efflux transporters likely exist. In this study, we characterized 2 transporters, MetA and MetB, that mediate manganese efflux in R. anatipestifer in response to manganese overload. MetA encodes a putative cation diffusion facilitator (CDF) protein, which has been characterized as a manganese transporter in other bacteria, while this is the first observation of a putative resistance-nodulation-division (RND) transporter contributing to manganese export in Gram-negative bacteria. In addition, the mechanism of manganese toxicity was studied by observing morphological changes and by transcriptome sequencing. Taken together, these results are important for expanding our understanding of manganese transporters and revealing the mechanism of manganese toxicity.
Keyphrases
  • oxide nanoparticles
  • oxidative stress
  • rna seq
  • single cell
  • genome wide
  • dna damage
  • mesenchymal stem cells
  • dna methylation
  • bone marrow
  • signaling pathway
  • amino acid
  • wild type
  • iron deficiency