Depolymerization within a Circular Plastics System.
Robbie A ClarkMichael P ShaverPublished in: Chemical reviews (2024)
The societal importance of plastics contrasts with the carelessness with which they are disposed. Their superlative properties lead to economic and environmental efficiency, but the linearity of plastics puts the climate, human health, and global ecosystems at risk. Recycling is fundamental to transitioning this linear model into a more sustainable, circular economy. Among recycling technologies, chemical depolymerization offers a route to virgin quality recycled plastics, especially when valorizing complex waste streams poorly served by mechanical methods. However, chemical depolymerization exists in a complex and interlinked system of end-of-life fates, with the complementarity of each approach key to environmental, economic, and societal sustainability. This review explores the recent progress made into the depolymerization of five commercial polymers: poly(ethylene terephthalate), polycarbonates, polyamides, aliphatic polyesters, and polyurethanes. Attention is paid not only to the catalytic technologies used to enhance depolymerization efficiencies but also to the interrelationship with other recycling technologies and to the systemic constraints imposed by a global economy. Novel polymers, designed for chemical depolymerization, are also concisely reviewed in terms of their underlying chemistry and potential for integration with current plastic systems.